133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考(專升本) → 2023年10月20日成考專升本每日一練《高等數(shù)學(xué)二》

2023年10月20日成考專升本每日一練《高等數(shù)學(xué)二》

2023/10/20 作者:匿名 來(lái)源:本站整理

2023年成考專升本每日一練《高等數(shù)學(xué)二》10月20日專為備考2023年高等數(shù)學(xué)二考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

判斷題

1、若,則。() ?

答 案:錯(cuò)

解 析:所以 ?

單選題

1、二元函數(shù)的極小值點(diǎn)是().

  • A:(1,0)
  • B:(1,2)
  • C:(-3,0)
  • D:(-3,2)

答 案:A

解 析:因?yàn)?img src="https://img2.meite.com/questions/202212/0763904e95b6f0e.png" />令,解得駐點(diǎn)(1,0),(1,2),(-3,0),(-3,2).又,,,故,對(duì)于點(diǎn)(1,0),,則點(diǎn)(1,0)是極小值點(diǎn);對(duì)于點(diǎn)(1,2),,則點(diǎn)(1,2)不是極值點(diǎn);對(duì)于點(diǎn)(-3,0)則點(diǎn)(-3,0)不是極值點(diǎn);對(duì)于點(diǎn)(-3,2),,則點(diǎn)(-3,2)是極大值點(diǎn).

2、設(shè),則() ?

  • A:1
  • B:0
  • C:1
  • D:2

答 案:C

解 析:

主觀題

1、計(jì)算

答 案:解:利用重要極限,則

2、求函數(shù)f(x)=的單調(diào)區(qū)間、極值和曲線y=f(x)的凹凸區(qū)間.

答 案:解:函數(shù)的定義域?yàn)椋ǎ蓿蓿髮?dǎo)得y'=x2-4,y''=2x令y'=0,得x=±2.y''=0,得x=0.
函數(shù)f(x)的單調(diào)增區(qū)間為(-∞,-2),(2,+∞),函數(shù)f(x)的單調(diào)減區(qū)間為(-2,2);
函數(shù)的極大值為,極小值為
曲線的凸區(qū)間為(-∞,0),曲線的凹區(qū)間為(0,+∞).

填空題

1、當(dāng)f(0)=()時(shí),f(x)=在x=0處連續(xù)。

答 案:mk

解 析:所以當(dāng)f(0)=km時(shí),f(x)在x=0處連續(xù)。

2、設(shè),f(x0)=5,則=().

答 案:

解 析:因?yàn)?img src="https://img2.meite.com/questions/202212/07638fee129b5b1.png" />,f(x0)=5,所以,即,所以;因?yàn)?img src="https://img2.meite.com/questions/202212/07638fee516ece0.png" />所以,即

簡(jiǎn)答題

1、設(shè)離散型隨機(jī)變量X的概率分布為 (1)求X的分布函數(shù)F(x);(2)求E(X). ?

答 案:(1)(2)E(X)=0×0.3+1×0.5+2×0.2=0.9.

2、求曲線與y=x+1所圍成的圖形分別繞x軸和y軸旋轉(zhuǎn)所得旋轉(zhuǎn)體的體積.

答 案:(1)繞x軸旋轉(zhuǎn)的體積為 (2)繞y軸旋轉(zhuǎn)的體積為

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?