133職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學(xué)歷類成考高起點 → 2023年08月16日成考高起點每日一練《數(shù)學(xué)(文史)》

2023年08月16日成考高起點每日一練《數(shù)學(xué)(文史)》

2023/08/16 作者:匿名 來源:本站整理

2023年成考高起點每日一練《數(shù)學(xué)(文史)》8月16日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過每日堅持練習(xí),逐步提升考試成績。

單選題

1、某學(xué)校為新生開設(shè)了4門選修課程,規(guī)定每位新生至少要選其中3門,則一位新生不同的選課方案共有 ( )

  • A:7種
  • B:4種
  • C:5種
  • D:6種

答 案:C

2、對于函數(shù),有下列兩個命題:①如果c=o,那么y=f(x)的圖像經(jīng)過坐標(biāo)原點②如果a<0,那么y=f(x)的圖像與x軸有公共點
則()

  • A:①②都為真命題
  • B:①為真命題,②為假命題
  • C:①為假命題,②為真命題
  • D:①②都為假命題

答 案:B

解 析:若c=0,則函數(shù)f(x)=ax2+bx過坐標(biāo)原點,故①為真命題;若a<0,而,則函數(shù)f(x)=ax2+bx+c的圖像開口向下,與x軸沒有交點,故②為假命題。因此選B選項。

3、設(shè)函數(shù)f(x十1)=2x+2,則f(x)=()

  • A:2x-1
  • B:2x
  • C:2x+1
  • D:2x+2

答 案:B

解 析:f(x十1)=2x+2=2(x+1),令t=x+1,故f(t)=2t,把t換成x,因此f(x)=2x.

4、命題甲:x>y且xy>0,命題乙:則() ?

  • A:甲是乙的充分條件,但不是必要條件
  • B:甲是乙的必要條件,但不是充分條件
  • C:甲是乙的充分必要條件
  • D:甲不是乙的必要條件也不是乙的充分條件

答 案:A

解 析:

主觀題

1、已知等差數(shù)列前n項和 (Ⅰ)求通項的表達(dá)式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當(dāng)n=1時,由 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項為公差為d=-4的等差數(shù)列,所以是首項為公差為d=-8,項數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項和公式得: ?

2、每畝地種果樹20棵時,每棵果樹收入90元,如果每畝增種一棵,每棵果樹收入就下降3元,求使總收入最大的種植棵數(shù). ?

答 案:設(shè)每畝增種x棵,總收入味y元,則每畝種樹(20+x)棵,由題意知增種x棵后每棵收入為(60-3x) 則有y=(90-3x)(20+x) 整理得y=+30x+1800 配方得y=+1875 當(dāng)x=5時,y有最大值,所以每畝地最多種25棵

3、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 當(dāng)x<-3時,f'(x)>0; 當(dāng)-32時,f'(x)>0; 故f(x)的單調(diào)遞減區(qū)間為(-3,2),f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(2,+∞) ?

4、設(shè)橢圓的中心是坐標(biāo)原點,長軸在x軸上,離心率已知點P到圓上的點的最遠(yuǎn)距離是求橢圓的方程 ?

答 案:由題意,設(shè)橢圓方程為 設(shè)P點到橢圓上任一點的距離為 d, 則在y=-b時,最大,即d也最大。 ?

填空題

1、不等式的解集是() ?

答 案:

解 析:

2、()

答 案:3

解 析:

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?