2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》8月17日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、(2-3i)2=()
- A:13-6i
- B:13-12i
- C:-5-6i
- D:-5-12i
答 案:D
解 析:
2、下列函數(shù)中,為奇函數(shù)的是()
- A:
- B:
- C:
- D:
答 案:B
解 析:當(dāng)f(-x)=-f(x),函數(shù)f(x)是奇函數(shù),只有選項(xiàng)B符合.
3、在的展開式中,的系數(shù)是
- A:448
- B:1140
- C:-1140
- D:-448
答 案:D
解 析:直接套用二項(xiàng)式展開公式: 注:展開式中第r+1項(xiàng)的二項(xiàng)式系數(shù)與第r+1項(xiàng)的系數(shù)不同,此題不能只寫出就為的系數(shù) ?
4、已知α∩β=a,b⊥β,b在α內(nèi)的射影是b’,那么b'和α的關(guān)系是()
- A:b'//α
- B:b'⊥α
- C:b'與α是異面直線
- D:b'與α相交成銳角
答 案:B
解 析: ∴由三垂線定理的逆定理知,b在α內(nèi)的射影b'⊥α,故選B ?
主觀題
1、為了測(cè)河的寬,在岸邊選定兩點(diǎn)A和B,望對(duì)岸標(biāo)記物C,測(cè)得AB=120m,求河的寬
答 案:如圖, ∵∠C=180°-30°-75°=75° ∴△ABC為等腰三角形,則AC=AB=120m 過C做CD⊥AB,則由Rt△ACD可求得CD==60m, 即河寬為60m ?
2、建筑一個(gè)容積為8000,深為6m的長(zhǎng)方體蓄水池,池壁每的造價(jià)為15元,池底每的造價(jià)為30元。(I)把總造價(jià)y(元)表示為長(zhǎng)x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?
答 案:
3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
4、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得所以AB =4.因此所以
填空題
1、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有() ?
答 案:2
解 析:當(dāng)x=0時(shí),y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù) 與坐標(biāo)軸的交點(diǎn)共有 2個(gè).
2、lg(tan43°tan45°tan47°)=() ?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0