2023年成考高起點每日一練《數(shù)學(文史)》8月27日專為備考2023年數(shù)學(文史)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。
單選題
1、已知函數(shù)f(x)的定義域為R,且滿足f(2x)=,則f(x)的反函數(shù)為()
- A:
- B:
- C:
- D:
答 案:B
解 析:令2x=t,則x= ?
2、已知雙曲線上一點到兩焦點(-5,0),(5,0)距離之差的絕對值等于6,則雙曲線方程為() ?
- A:
- B:
- C:
- D:
答 案:A
解 析:由已知條件知雙曲線焦點在x軸上屬于第一類標準式,又知c=5,2a=6, ∴a=3,∴所求雙曲線的方程為 ?
3、從15名學生中選出兩人擔任正、副班長,不同的選舉結果共有() ?
- A:30種
- B:90種
- C:210種
- D:225種
答 案:C
解 析:由已知條件可知本題屬于排列問題,
4、設α是三角形的一個內(nèi)角,若,則sinα=()
- A:
- B:
- C:
- D:
答 案:D
解 析:由題知0<α<兀,而,故,因此.
主觀題
1、已知等差數(shù)列前n項和 (Ⅰ)求通項的表達式 (Ⅱ)求的值 ?
答 案:(Ⅰ)當n=1時,由得 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項為公差為d=-4的等差數(shù)列,所以是首項為公差為d=-8,項數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項和公式得: ?
2、設函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.
答 案:(I)因為,所以f'(2)=3×22-4=8.(II)因為x<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為
3、在△ABC中,AB=2,BC=3,B=60°,求AC及△ABC的面積
答 案:
4、已知直線l的斜率為1,l過拋物線C:的焦點,且與C交于A,B兩點.
(I)求l與C的準線的交點坐標;
(II)求|AB|.
答 案:(I)C的焦點為,準線為由題意得l的方程為因此l與C的準線的交點坐標為(II)由得設A(x1,y1).B(x2,y2),則因此
填空題
1、()
答 案:3
解 析:
2、任選一個不大于20的正整數(shù),它恰好是3的整數(shù)倍的概率是() ?
答 案:
解 析:設n為不大于20的正整數(shù)的個數(shù),則n=20,m為在這20個數(shù)中3的倍數(shù):3,6、9、12、15、18的個數(shù)。 ∴m=6,∴所求概率= ?