133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考高起點(diǎn) → 2023年09月16日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023年09月16日成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》

2023/09/16 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》9月16日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、已知數(shù)列前n項(xiàng)和則第5項(xiàng)的值是()

  • A:7
  • B:10
  • C:13
  • D:16

答 案:C

解 析:=3n-2.當(dāng)n=5時(shí),=3×5-2=13

2、的導(dǎo)數(shù)是 ?

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:

3、下列函數(shù)中,為減函數(shù)的是()

  • A:y=cosx
  • B:
  • C:
  • D:

答 案:C

解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù),故選C選項(xiàng).

4、對(duì)于函數(shù),有下列兩個(gè)命題:①如果c=o,那么y=f(x)的圖像經(jīng)過(guò)坐標(biāo)原點(diǎn)②如果a<0,那么y=f(x)的圖像與x軸有公共點(diǎn)
則()

  • A:①②都為真命題
  • B:①為真命題,②為假命題
  • C:①為假命題,②為真命題
  • D:①②都為假命題

答 案:B

解 析:若c=0,則函數(shù)f(x)=ax2+bx過(guò)坐標(biāo)原點(diǎn),故①為真命題;若a<0,而,則函數(shù)f(x)=ax2+bx+c的圖像開(kāi)口向下,與x軸沒(méi)有交點(diǎn),故②為假命題。因此選B選項(xiàng)。

主觀題

1、設(shè)橢圓的中心是坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率已知點(diǎn)P到圓上的點(diǎn)的最遠(yuǎn)距離是求橢圓的方程 ?

答 案:由題意,設(shè)橢圓方程為 設(shè)P點(diǎn)到橢圓上任一點(diǎn)的距離為 d, 則在y=-b時(shí),最大,即d也最大。 ?

2、在△ABC中,B=120°,C=30°,BC=4,求△ABC的面積.

答 案:因?yàn)锳= 180°-B-C=30°,所以AB = BC=4.因此△ABC的面積

3、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求通項(xiàng)的表達(dá)式 (Ⅱ)求的值 ?

答 案:(Ⅰ)當(dāng)n=1時(shí),由 也滿足上式,故=1-4n(n≥1) (Ⅱ)由于數(shù)列是首項(xiàng)為公差為d=-4的等差數(shù)列,所以是首項(xiàng)為公差為d=-8,項(xiàng)數(shù)為13的等差數(shù)列,于是由等差數(shù)列前n項(xiàng)和公式得: ?

4、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間

答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得 6-6m-36=-36 故m=1. (Ⅱ)由(Ⅰ)得f'(x)= 令f'(x)=0,解得 當(dāng)x<-3時(shí),f'(x)>0; 當(dāng)-32時(shí),f'(x)>0; 故f(x)的單調(diào)遞減區(qū)間為(-3,2),f(x)的單調(diào)遞增區(qū)間為(-∞,-3),(2,+∞) ?

填空題

1、函數(shù)y=的定義域是()

答 案:[1,+∞)

解 析:要是函數(shù)y=有意義,需使 所以函數(shù)的定義域?yàn)閧x|x≥1}=[1,+∞) ?

2、已知向量a=(3,2),b=(-4,x),且a⊥b,則x=() ?

答 案:6

解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6. ?

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?