133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類(lèi)成考高起點(diǎn) → 2023年10月10日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年10月10日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/10/10 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月10日專(zhuān)為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、下列函數(shù)中,為減函數(shù)的是()

  • A:
  • B:
  • C:
  • D:

答 案:C

解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù).

2、參數(shù)方程為參數(shù))表示的圖形為()

  • A:直線
  • B:圓
  • C:橢圓
  • D:雙曲線

答 案:B

解 析:即半徑為1的圓,圓心在原點(diǎn)

3、過(guò)點(diǎn)(-2,2)與直線x+3y-5=0平行的直線是()

  • A:x+3y-4=0
  • B:3x+y+4=0
  • C:x+3y+8=0
  • D:3x-y+8=0

答 案:A

解 析:所求直線與x+3y-5=0平行,可設(shè)所求直線為x+3y+c=0,將點(diǎn)(一2,2)帶入直線方程,故-2+3×2+c=0,解得c=-4,因此所求直線為線為x+3y-4=0.

4、對(duì)滿足a>b的任意兩個(gè)非零實(shí)數(shù),下列不等式成立的是() ?

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析:A錯(cuò)誤,例如-2>4,而 B錯(cuò)誤,例如:-10>100,而 C錯(cuò)誤,例如:-1>-2,而

主觀題

1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點(diǎn)((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得當(dāng)時(shí),f'(x)時(shí),f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時(shí)取得極小值

2、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?

答 案: ?

3、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.

答 案:由已知得解得

4、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值

答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> (Ⅱ) ?

填空題

1、不等式的解集為() ?

答 案:

解 析:

2、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?

答 案:

解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?