2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(文史)》10月10日專為備考2023年數(shù)學(xué)(文史)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。
單選題
1、不等式|2x-3|≤1的解集為()
- A:{x|1≤x≤2}
- B:{x|x≤-1或x≥2}
- C:{x|1≤x≤3}
- D:{x|2≤x≤3}
答 案:A
解 析:故原不等式的解集為{x|1≤x≤2}
2、下列函數(shù)中,為減函數(shù)的是()
- A:y=cosx
- B:
- C:
- D:
答 案:C
解 析:由對(duì)數(shù)函數(shù)的性質(zhì)可知,當(dāng)?shù)讛?shù)大于0小于1時(shí),在定義域內(nèi),對(duì)數(shù)函數(shù)為減函數(shù),故選C選項(xiàng).
3、b=0是直線y=kx+b過(guò)原點(diǎn)的()
- A:充分但不必要條件
- B:必要但不充分條件
- C:充要條件
- D:既不充分也不必要條件
答 案:C
解 析:b=0直線y=kx+b過(guò)原點(diǎn)
4、函數(shù)f(x)=在區(qū)間[1,4]上的最大值和最小值分別是()
- A:2和-2
- B:2,沒(méi)有最小值
- C:1和1
- D:2和4
答 案:A
解 析:f(x)= ?
主觀題
1、設(shè)函數(shù)f(x)且f'(-1)=-36 (Ⅰ)求m (Ⅱ)求f(x)的單調(diào)區(qū)間
答 案:(Ⅰ)由已知得f'= 又由f'(-1)=-36得
6-6m-36=-36
故m=1.
(Ⅱ)由(Ⅰ)得f'(x)=
令f'(x)=0,解得
當(dāng)x<-3時(shí),f'(x)>0;
當(dāng)-3
2、設(shè)函數(shù)
(I)求f'(2);
(II)求f(x)在區(qū)間[一1,2]的最大值與最小值.
答 案:(I)因?yàn)?img src="https://img2.meite.com/questions/202303/1564111dd4eb139.png" />,所以f'(2)=3×22-4=8.(II)因?yàn)閤<-1,f(-1)=3.f(2)=0.
所以f(x)在區(qū)間[一1,2]的最大值為3,最小值為
3、已知直線l的斜率為1,l過(guò)拋物線C:的焦點(diǎn),且與C交于A,B兩點(diǎn).
(I)求l與C的準(zhǔn)線的交點(diǎn)坐標(biāo);
(II)求|AB|.
答 案:(I)C的焦點(diǎn)為,準(zhǔn)線為由題意得l的方程為因此l與C的準(zhǔn)線的交點(diǎn)坐標(biāo)為(II)由得設(shè)A(x1,y1).B(x2,y2),則因此
4、已知a,b,c成等差數(shù)列,a,b,c+1成等比數(shù)列.若b=6,求a和c.
答 案:由已知得解得
填空題
1、已知向量a=(3,2),b=(-4,x),且a⊥b,則x=() ?
答 案:6
解 析:∵a⊥b, ∴3×(-4)+2x=0 ∴x=6. ?
2、點(diǎn)(4,5)關(guān)于直線y=x的對(duì)稱點(diǎn)的坐標(biāo)為()
答 案:(5,4)
解 析:點(diǎn)(4,5)關(guān)于直線y=x的對(duì)稱點(diǎn)為(5,4).