2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月14日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過每日堅(jiān)持練習(xí),逐步提升考試成績。
單選題
1、設(shè)雙曲線的漸近線的斜率為k,則|k|=() ?
- A:
- B:
- C:
- D:
答 案:D
解 析:雙曲線漸近線的斜率為k故本題中k
2、在的展開式中,的系數(shù)是
- A:448
- B:1140
- C:-1140
- D:-448
答 案:D
解 析:直接套用二項(xiàng)式展開公式: 注:展開式中第r+1項(xiàng)的二項(xiàng)式系數(shù)與第r+1項(xiàng)的系數(shù)不同,此題不能只寫出就為的系數(shù) ?
3、如果不共線的向量a和b有相等的長度,則(a+b)(a-b)=() ?
- A:0
- B:1
- C:-1
- D:2
答 案:A
解 析:(a+b)(a-b)=
4、將一顆骰子拋擲1次,到的點(diǎn)數(shù)為偶數(shù)的概率為 ?
- A:
- B:
- C:
- D:
答 案:D
解 析:一顆骰子的點(diǎn)數(shù)分別為1,2,3,4,5,6,其中偶數(shù)與奇數(shù)各占一半,故拋擲1次,得到的點(diǎn)數(shù)為偶數(shù)的概率為
主觀題
1、某工廠每月生產(chǎn)x臺游戲機(jī)的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當(dāng)每月生產(chǎn)多少臺時,獲利潤最大?最大利潤為多少? ?
答 案:利潤 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函數(shù)當(dāng)a<0時有最大值 是開口向下的拋物線,有最大值 法二:用導(dǎo)數(shù)來求解 因?yàn)閤=90是函數(shù)在定義域內(nèi)唯一駐點(diǎn) 所以x=90是函數(shù)的極大值點(diǎn),也是函數(shù)的最大值點(diǎn),其最大值為L(90)=3294 ?
2、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.
答 案:由△ABC的面積為得所以AB =4.因此所以
3、設(shè)函數(shù)f(x)= (Ⅰ)求f(x)的單調(diào)區(qū)間; (Ⅱ)求 f(x)的極值
答 案:(Ⅰ)函數(shù)的定義域?yàn)?img src="https://img2.meite.com/questions/202303/28642286bee9cc3.png" /> (Ⅱ) ?
4、建筑一個容積為8000,深為6m的長方體蓄水池,池壁每的造價為15元,池底每的造價為30元。(I)把總造價y(元)表示為長x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?
答 案:
填空題
1、函數(shù)的圖像與坐標(biāo)軸的交點(diǎn)共有() ?
答 案:2
解 析:當(dāng)x=0時,y=-2=-1,故函數(shù)與y軸交于(0,-1)點(diǎn),令y=0,則有故函數(shù)與x軸交于(1,0) 點(diǎn),因此函數(shù) 與坐標(biāo)軸的交點(diǎn)共有 2個.
2、lg(tan43°tan45°tan47°)=() ?
答 案:0
解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0