133職教網(wǎng):包含各種考證等職教知識(shí)

網(wǎng)站首頁(yè)

您的位置:首頁(yè) 學(xué)歷類成考高起點(diǎn) → 2023年10月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023年10月15日成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》

2023/10/15 作者:匿名 來(lái)源:本站整理

2023年成考高起點(diǎn)每日一練《數(shù)學(xué)(理)》10月15日專為備考2023年數(shù)學(xué)(理)考生準(zhǔn)備,幫助考生通過(guò)每日?qǐng)?jiān)持練習(xí),逐步提升考試成績(jī)。

單選題

1、(2-3i)2=()

  • A:13-6i
  • B:13-12i
  • C:-5-6i
  • D:-5-12i

答 案:D

解 析:

2、在△ABC中,若b=,c=則a等于()

  • A:2
  • B:
  • C:
  • D:無(wú)解

答 案:B

解 析:此題是已知兩邊和其中一邊的對(duì)角,解三角形時(shí),會(huì)出現(xiàn)一解、兩解、無(wú)解的情況,要注意這一點(diǎn).用余弦定理可得解出

3、如果不共線的向量a和b有相等的長(zhǎng)度,則(a+b)(a-b)=() ?

  • A:0
  • B:1
  • C:-1
  • D:2

答 案:A

解 析:(a+b)(a-b)=

4、過(guò)點(diǎn)P(2,3)且在兩軸上截距相等的直線方程為() ?

  • A:
  • B:
  • C:x+y=5
  • D:

答 案:B

解 析:選項(xiàng)A中,在x、y 軸上截距為 5.但答案不完整 所以選項(xiàng)B中有兩個(gè)方程,在x軸上橫截距與y軸上的縱截距都為0,也是相等的 選項(xiàng)C,雖然過(guò)點(diǎn)(2,3),實(shí)質(zhì)上與選項(xiàng)A相同.選項(xiàng) D,轉(zhuǎn)化為:答案不完整 ?

主觀題

1、在△ABC中,B=120°,BC=4,△ABC的面積為,求AC.

答 案:由△ABC的面積為所以AB =4.因此所以

2、已知數(shù)列的前n項(xiàng)和 求證:是等差數(shù)列,并求公差和首項(xiàng)。 ?

答 案: ?

3、已知等差數(shù)列前n項(xiàng)和 (Ⅰ)求這個(gè)數(shù)列的通項(xiàng)公式;(Ⅱ)求數(shù)列第六項(xiàng)到第十項(xiàng)的和

答 案: ?

4、某工廠每月生產(chǎn)x臺(tái)游戲機(jī)的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當(dāng)每月生產(chǎn)多少臺(tái)時(shí),獲利潤(rùn)最大?最大利潤(rùn)為多少? ?

答 案:利潤(rùn) =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函數(shù)當(dāng)a<0時(shí)有最大值 是開(kāi)口向下的拋物線,有最大值 法二:用導(dǎo)數(shù)來(lái)求解 因?yàn)閤=90是函數(shù)在定義域內(nèi)唯一駐點(diǎn) 所以x=90是函數(shù)的極大值點(diǎn),也是函數(shù)的最大值點(diǎn),其最大值為L(zhǎng)(90)=3294 ?

填空題

1、lg(tan43°tan45°tan47°)=() ?

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

2、橢圓的中心在原點(diǎn),一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn)分別是直線x+3y-6與兩坐標(biāo)軸的交點(diǎn),則此橢圓的標(biāo)準(zhǔn)方程為() ?

答 案:

解 析:原直線方程可化為交點(diǎn)(6,0),(0,2). 當(dāng)點(diǎn)(6,0)是橢圓一個(gè)焦點(diǎn),點(diǎn)(0,2) 是橢圓一個(gè)頂點(diǎn)時(shí),c=6,b=2,當(dāng)點(diǎn)(0,2) 是橢圓一個(gè)焦點(diǎn),(6,0) 是橢圓一個(gè)頂點(diǎn)時(shí),c=2,b-6,

網(wǎng)友評(píng)論

0
發(fā)表評(píng)論

您的評(píng)論需要經(jīng)過(guò)審核才能顯示

精彩評(píng)論

最新評(píng)論
?