133職教網(wǎng):包含各種考證等職教知識

網(wǎng)站首頁

您的位置:首頁 學歷類成考高起點 → 2023年10月20日成考高起點每日一練《數(shù)學(理)》

2023年10月20日成考高起點每日一練《數(shù)學(理)》

2023/10/20 作者:匿名 來源:本站整理

2023年成考高起點每日一練《數(shù)學(理)》10月20日專為備考2023年數(shù)學(理)考生準備,幫助考生通過每日堅持練習,逐步提升考試成績。

單選題

1、已知空間向量i,j,k為兩兩垂直的單位向量,向量a=2i+3j+mk,若,則m=()

  • A:-2
  • B:-1
  • C:0
  • D:1

答 案:C

解 析:由題可知向量a=(2,3,m),故,解得m=0.

2、圓的圓心在()點上 ?

  • A:(1,-2)
  • B:(0,5)
  • C:(5,5)
  • D:(0,0)

答 案:A

解 析:因為所以圓的圓心為O(1,-2)

3、中心在坐標原點,對稱軸為坐標軸,且一個頂點(3,0),虛軸長為8的雙曲線方程是()

  • A:
  • B:
  • C:
  • D:

答 案:B

解 析:雙曲線有一個頂點為(3,0),因此所求雙曲線的實軸在x軸上,可排除A、C選項,又由于虛軸長為8,故b=4,即b2=16,故雙曲線方程為

4、設(shè)0

  • A:
  • B:
  • C:
  • D:

答 案:D

解 析: ?

主觀題

1、設(shè)函數(shù)f(x)=xlnx+x.(I)求曲線y=f(x)在點((1,f(1))處的切線方程;
(II)求f(x)的極值.

答 案:(I)f(1)=1,f'(x)=2+lnx,故f'(1)=2.所以曲線y=f(x)在點(1,f(1))處的切線方程為y=2x-1.(II)令f'(x)=0,解得時,f'(x)時,f'(x)>O.故f(x)在區(qū)間單調(diào)遞減,在區(qū)間單調(diào)遞增.因此f(x)在時取得極小值

2、建筑一個容積為8000,深為6m的長方體蓄水池,池壁每的造價為15元,池底每的造價為30元。(I)把總造價y(元)表示為長x(m)的函數(shù);(Ⅱ)求函數(shù)的定義域 ?

答 案:

3、已知數(shù)列的前n項和 求證:是等差數(shù)列,并求公差和首項。 ?

答 案: ?

4、某工廠每月生產(chǎn)x臺游戲機的收入為R(x)=+130x-206(百元),成本函數(shù)為C(x)=50x+100(百元),當每月生產(chǎn)多少臺時,獲利潤最大?最大利潤為多少? ?

答 案:利潤 =收入-成本, L(x)=R(x)-C(x)=+130x-206-(50x+100)=+80x-306 法一:用二次函數(shù)當a<0時有最大值 是開口向下的拋物線,有最大值 法二:用導(dǎo)數(shù)來求解 因為x=90是函數(shù)在定義域內(nèi)唯一駐點 所以x=90是函數(shù)的極大值點,也是函數(shù)的最大值點,其最大值為L(90)=3294 ?

填空題

1、長方體的長、寬、高分別為2,3,6,則該長方體的對角線長為()

答 案:7

解 析:由題可知長方體的底面的對角線長為,則在由高、底面對角線、長方體的對角線組成的三角形中,長方體的對角線長為

2、lg(tan43°tan45°tan47°)=() ?

答 案:0

解 析:lg(tan43°tan45°tan47°)=lg(tan43°tan45°cot43°)=lgtan45°=lg1=0

網(wǎng)友評論

0
發(fā)表評論

您的評論需要經(jīng)過審核才能顯示

精彩評論

最新評論
?